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Introduction and rationale of the talk

Arpino B. and Mealli F. (2011). The specification of the propensity score in
multilevel observational studies. Computational Statistics and Data Analysis
55, 1770–1780

Forastiere L., Airoldi E. M., and Mealli F. (2016). Identification and estimation
of treatment and interference effects in observational studies on networks.
Arxiv working paper (http://arxiv.org/abs/1609.06245)

Papadogeorgou G., Mealli F., and Zigler C. (2017). Inverse probability
weighted estimators under partial interference. (Work in progress, poster at
ACIC 2017, Causal Inference for interfering units under treatment regimes that
incorporate covariate information in the counterfactual treatment assignment)

Common feature of these papers is that they use the (generalized) propensity
score to propose methods to adjust for covariates in complex settings under
various form of unconfoundedness and SUTVA



Notation
Each unit (in a population of N) is characterized by a K-vector of characteristics,
denoted by Xi for unit i, with X denoting the N × K matrix of characteristics

Let Wi denote the treatment, to which unit i is assigned : Wi ∈ W = {0, 1}
Stable Unit Treatment Value Assumption (SUTVA)

X SUTVA: the potential outcomes for any unit do not vary with the treatments
assigned to any other units, and there are no different versions of the treatment

X SUTVA is a form of exclusion restriction: assumptions that rely on outside
information to rule out the possibility of any causal effect of a particular treatment

For each unit, let Yi(0) and Yi(1) denote the outcomes under the two values of the
treatment

Potential outcomes (Y(0), Y(1)) = [(Yi(0), Yi(1))]Ni=1 and assignments W = [Wi]
N
i=1

jointly determine the values of the observed and missing outcomes:

Yobs
i ≡ Yi(Wi) = Wi · Yi(1) + (1 − Wi) · Yi(0)

Ymis
i ≡ Yi(1 − Wi) = (1 − Wi) · Yi(1) + Wi · Yi(0)



Basics of Propensity Scores
The assignment mechanism (AM) gives the conditional probability of each vector of
assignments given the covariates and potential outcomes:

p(W|X,Y(0),Y(1))

Given a population of N units, the AM defines the probability of receiving the
treatment for each unit i as a function of the covariates and the potential outcomes:

pi(X,Y(0),Y(1)) =
∑

W:Wi=1

p(W|X,Y(0),Y(1)) ∀ i = 1, 2, . . . ,N

Restrictions on the AM: Individualistic, Probabilistic and Unconfounded
X Individualistic Assignment:

pi(X,Y(0),Y(1)) = p(Wi = 1|Xi,Yi(0), Yi(1)) ∀ i = 1, 2, . . . ,N

X Probabilistic Assignment: For each possible X,Y(0),Y(1)

0 < pi(X,Y(0),Y(1)) < 1 ∀ i = 1, 2, . . . ,N

X Unconfounded Assignment: An AM is unconfounded if it does not depend on the
potential outcomes:

p(W|X,Y(0),Y(1)) = p(W|X)



Propensity scores

Propensity score for binary treatments. The propensity score at x is the average unit
assignment probability for units with Xi = x

e(x) = 1
N(x)

∑
i:Xi=x

pi(X,Y(0),Y(1))

where N(x) = ♯{i = 1, . . . ,N | Xi = x} is the number of units with Xi = x (e(x) ≡ 0 if N(x) = 0)

Unconfoundedness and Individualistic assignment implies that the propensity score is the
unit-level assignment probability of receiving the treatment

e(x) = p(Wi = 1|Xi)

Observational studies: An assignment mechanism corresponds to an observational study if it
is an unknown function of its arguments



Properties of the propensity score

Balancing property of the propensity score: The probability of receiving the
active treatment given the covariates is free of dependence on the covariates
given the propensity score

Wi ⊥⊥ Xi | e(Xi)

Unconfoundedness given the popensity score: Suppose assignment to
treatment is unconfounded. Then assignment is unconfounded given the
propensity score only:

If Wi ⊥⊥ Yi(0),Yi(1) | Xi) then Wi ⊥⊥ Yi(0),Yi(1) | e(Xi)

Unconfoundedness given the propensity score has generated methods of
adjusting based on the propensity score: weighting, regression,
subclassification, matching



Propensity score with multilevel data

Clustered data: individual- and cluster-level covariates

Treatment assignment at cluster level
(Keele and Zubizarreta, 2017; Pimentel at al., 2017)

Treatment assignment at individual level
(Kim and Seltzer, 2007; Rosenbaum et al., 2007; Aussems, 2008; Su, 2008;
Li et al., 2013; Arpino and Mealli, 2012)



The specification of the propensity score in multilevel studies

Assignment mechanism may depend on individual- and cluster-level
covariates
Mimic block randomized experiments or multi-site experiments
Arpino and Mealli (2012) consider cases of omitted variable bias due to
unobserved cluster-level covariates
Matching within clusters achieves perfect balance in cluster-level covariates
but often not feasible and leading to poor balance in individual-level covariates



The specification of the propensity score in multilevel studies
(Arpino and Mealli, 2012)

Different specification of the propensity score (logit link):
X Random-effect multilevel models
X Fixed-effect models
X Models that ignore clustering

Simulations showing bias/efficiency of nearest-neighbour PS matching
estimators
Motivating example: analyzing the effects of childbearing events on economic
wellbeing in Vietnam, where community characteristics play important roles



Overall results and implications

Fixed-effect specification of the PS outperforms in terms of bias and efficiency

X Robust to different distribution of cluster-level covariates
X Good even with small and/or imbalanced cluster size
X Still good when irrelevant variables included

The inclusion of fixed-effects specifies a model for the PS more general than
the ideal if cluster-level variables were available
When conducting PS analysis it is safer to specify a more general model than
pursuing model parsimony



Interference

So far, we have assummed SUTVA, according to which the potential
outcomes for any unit do not vary with the treatments assigned to any other
units

SUTVA allows us to write that for a unit i there are two potential outcomes
Yi(0),Yi(1)

In the presence of interference, a unit’s outcome depends on the individual
treatment, but also on the treatment of others

X For example, neighbor’s vaccination status can affect an individual’s
outcome

Under interference, the set of potential outcomes is {Yi(w),w ∈ {0, 1}n}

X This allows for 2n potential outcomes for every unit, where n is the
number of observations

X The treatment of any other observation can affect the outcome of unit i



Partial interference

Units can be clustered in groups within which there is interference, but not
among them

Denote k ∈ {1, 2, . . . ,K} to be a cluster with nk individuals.

W(n) = {0, 1}n: set of vectors of possible treatment allocations of length n

Let Wki to be the treatment indicator of unit i in cluster k, and write
Wk = (Wk1, . . . ,Wknk), and Wk,−i = (Wk1, . . . ,Wkj−1,Wkj+1, . . . ,Wknk)

Partial interference. Let k(i) ∈ {1, . . . ,K} denote the class to which unit i
belongs, and decompose W = (W1 . . . ,WK). For all W and W′ such that
Wk(i) = W′

k(i) we have Yi(W) = Yi(W′)

X Then, unit’s i potential outcomes are {Y(wk),wk ∈ W(n)}

Xki = vector of fixed individual and group-level covariates; Xk,Xk,−i similarly to
Wk,Wk,−i



Observed and counterfactual treatment allocation
(Papadogeorgou, Mealli, Zigler, 2017)

Observed treatment allocation
X The mechanism that has assigned the observed treatment
X Clinical trials (randomization), observational studies (covariates)

Counterfactual treatment allocation
X What is the intervention that we are imagining?
X In what hypothesized world are we estimating the effect of interest?
X Interpretation of the effects requires a hypothesized treatment allocation

that is applicable
Previous literature on interference has considered
X Randomized observed treatment allocation
X Covariate-dependent observed treatment allocation
X Randomization-based counterfactual treatment allocation

We propose the estimation of causal effects in the presence of interference
under realistic interventions



Counterfactual treatment allocation

We consider counterfactual treatment allocation that

X Incorporate covariates as treatment predictors
X Allow for dependence of treatments within the cluster
X Intervention takes place at the cluster level

Denote pk(Wk;Xk, α) to be the probability of allocating treatment Wk to cluster
k, when the cluster average propensity of treatment is equal to α

The individual average potential outcome under w ∈ {0, 1} is defined as

Yki(w;Xk, α) =
∑

Yki(Wki = w,Wk,−i = wk,−i)pk(Wk,−i = wk,−i;Wki = w,Xk, α)

where the summation is over wk,−i ∈ W(nk − 1)

Group average potential outcome: Yk(w;Xk, α) =
1
nk

Yki(w;Xk, α)

Population average potential outcome: Y(w;X, α) = 1
K Yk(w;Xk, α)



Direct and indirect effects

If the percentage of units in the cluster that are treated is equal to α, what is
the effect of treatment?

X Individual direct effect: DEki(Xk, α) = Yki(0;Xk, α)− Yki(1;Xk, α)

X Group average direct effect: DEk(Xk, α) =
1
nk

∑nk
i=1 DEki(Xk, α)

X Population average direct effect: DE(X, α) = 1
K

∑K
k=1 DEk(Xk, α)

Among control units, what is the effect of changing α from α1 to α2?

X Individual indirect effect: IEki(α1, α2;Xk) = Yki(0;Xk, α1)− Yki(0;Xk, α2)

X Group and population level estimands IEk(α1, α2;Xk), IE(α1, α2;X) are
defined similarly



Allocation average potential outcome and effects
What if we are interested in evaluating the effect of interventions that shift the
distribution of observed α from Fα to F′

α
For example, federal regulations could target the increase of state-specific
vaccination rates
X Each state’s compliance could be different
X We cannot know in advance which α each state/city will accept

Allocation average individual potential outcome under Fα

Yki(w;Xk,Fα) =

∫
Yki(w;Xk, α) dFα(α)

Allocation average population direct effect

DE(X,Fα) =

∫
DE(X, a) dFα(α)

Allocation average population indirect effect

IE(X,Fα,F′
α) =

∫
Y(0;X, α) dFα(α)−

∫
Y(0;X, α) dF′

α(α)



Assumptions, estimator, and asymptotic results

Positivity: p(Wk = wk | Xk) > δ0 > 0 for all wk ∈ W(nk)

Unconfoudedness: Wk ⊥⊥ Yk(·) | Xk

Estimators

X Ŷk(w;Xk, α) =
1
nk

nk∑
i=1

p(Wk,−i | Wki = w,Xk, α)

p(Wk | Xk)
I{Wki = w}Yobs

ki

X ŶK(w,X, α) =
1
K

K∑
k=1

Ŷk(w,Xk, α)

Theorem 1 (Unbiasedness). Unbiased for Yk(w;Xk, α), Y(w;X, α)

Theorem 2 (Consistency). Let F0 be the distribution of (Yk,Xk,Wk) in the whole population.

lim
K−→∞

ŶK(w,X′, α) = EF0 [Yk(w,X, α)] a.s. and so in probability

Theorem 3 (Asymptotic normality). If positivity and unconfoudedness hold, the propensity
scores are known or estimated from the correctly specified propensity score model, and
outcome and cluster size are bounded, then ŶK(w,X, α) is asymptotically normal → standard
errors!



The use of the propensity score
When the observed treatment allocation is not known (most times), p(Wk|Xk)
needs to be estimated
We model Wki ∼ Bern(pki) where

logit(pki) = bk + Xki, bk ∼ N(0, σ2
b),

and Xki includes both individual and cluster level covariates

Then p(Wk|Xk) =

∫ [ nk∏
i=1

p(Wki|bk,Xki)

]
f (bi|σ2

b) dbi

The numerator is set equal to
∏
j ̸=i

p(Wkj|Xkj, α) where bk has been set equal to

bαk , for the bαk that satisfies
1

nk − 1

∑
j̸=i

p(Wkj|bk = bαk ,Xkj) = α

The propensity score has been used to capture the covariate-treatment
relationship in the observed (denominator) and counterfactual (numerator)
treatment allocation



Estimating treatment and spillover effects in observational social network data using GPSs
(Forastiere, Airoldi, Mealli, 2016)

N = (V,E): Social Network
X i = 1, . . . ,N = |V|: Node (Unit)
X Ni ={j ∈ V : eij = 1} : Neighborhood of unit i
X Ni = |Ni|: Degree of unit i

W ∈ {0, 1}N : Treatment Vector Yi(W): Potential Outcomes

Under SUTVA: Yi(Wi,WNi ,W−Ni) = Yi(Wi,W′
Ni
,W′

−Ni
) ∀WNi ,W′

Ni
,W−Ni ,W′

−Ni

SUTVA is untenable in the presence of network data

Neighborhood-Level SUTVA:

Yi(Wi,WNi ,W−Ni) = Yi(Wi,WNi ,W
′
−Ni

) ∀W−Ni ,W
′
−Ni

G-Neighborhood-Level SUTVA (SUTNVA). Let gi(·) be a function
gi : {0, 1}Ni → Gi ⊂ R

Yi(Wi,WNi ,W−Ni) = Yi(Wi,W′
Ni
,W′

−Ni
)

∀W−Ni ,W′
−Ni

and ∀WNi ,W′
Ni
: gi(WNi) = gi(W′

Ni
)



Main Effects and Spillover Effects
A potential outcome Yi(w, g) is defined only for a subset of nodes Vg = {i ∈ V : g ∈ Gi}
Main Effect: Average effect of the individual treatment, when the neighborhood
treatment is set to g

τ(g) = E
[

Yi(Wi = 1,Gi = g)− Yi(Wi = 0,Gi = g)| i ∈ Vg
]

Overall Main Effect: Average effect of the individual treatment, averaged over the
neighborhood treatment distribution

τ =
∑
g∈G

τ(g)P(Gi = g) G =
∪

i

Gi

Spillover Effect: average effect of having the neighborhood treatment at level g versus
0, when the individual treatment is set to z

δ(g;w) = E
[

Yi(Wi = w,Gi = g)− Yi(Wi = w,Gi = 0)| i ∈ Vg
]

Overall Spillover Effect ∆(w): average of spillover effects δ(g;w) over the
neighborhood treatment distribution

∆(w) =
∑
g∈G

δ(g;w)P(Gi = g) G =
∪

i

Gi



Joint Treatment and Identifying Assumptions
(Zi,Gi): Joint Treatment
Observational study: The assignment mechanism

Pr(W,G|X, {Y(w, g),w = 0, 1; g ∈ G})

is unknown and depends on covariates,

X = [Xi]i = [Xind
i ,Xneig

i ]i

where Xind
i = Individual characteristics and Xneig

i = Summary of individual characteristics in
neighboring units + Neighborhood structure (Ni, Shared friends,. . .)
Unconfoudedness Assumption of Joint Treatment

Yi(w, g) ⊥⊥ Wi,Gi | Xi

Under SUTNVA and unconfoudedness of the joint treatment an unbiased estimator for the
adjusted average of Yobs

i , conditional on the joint treatment

Yobs
w,g,X := EX[E[Yobs

i | Wi = w,Gi = g,Xi, i ∈ Vg] | Wi = w,Gi = g, i ∈ Vg]

is unbiased for the marginal mean E[Yi(w, g) | i ∈ Vg]:

Yobs
w,g,Xi = E[Yi(w, g) | i ∈ Vg]



Bias for main effects and overall main effects when SUTVA is wrongly assumed

Observed adjusted mean difference

τ obs
X⋆ =

∑
x∈X⋆

E
[
Yobs

i | Wi = 1,X⋆ = x
]
− E

[
Yobs

i | Wi = 0,X⋆ = x
]

p(X⋆ = x)

Under SUTVA and if Yi(w) ⊥⊥ Wi | X⋆
i , unbiased covariate-adjusted estimators of τ obs

X⋆

are unbiased for E[Yi(1)]− E[Yi(0)]

Theorem 1. If Yi(w, g) ⊥⊥ Wi,Gi | X⋆
i , then unbiased estimators of τ obs

X⋆ are biased for τ

Corollary 1. If Yi(w, g) ⊥⊥ Wi,Gi | X⋆
i and Wi ⊥⊥ Gi | X⋆

i , an unbiased estimator of τ obs
X⋆ is

unbiased for τ , even in the presence of interference: τ obs
X⋆ = τ

Corollary 2. If Yi(w, g) ⊥⊥ Wi,Gi | X⋆
i but Wi ̸⊥⊥ Gi | X⋆

i , then an unbiased estimator of
τ obs

X⋆ is biased for τ

The bias depends on the level of interference and the association between Wi and Gi

conditional on X⋆
i

Theorem 2. If Yi(w, g) ̸⊥⊥ Wi,Gi | X⋆
i , this bias due to interference is combined with the

bias due to unmeasured confounders (U = Xi\X⋆
i )



Joint propensity score

Joint propensity score

ψ(w; g; x) := Pr(Wi = w,Gi = g | Xi = x) =
Pr(Gi = g | Wi = w,Xg

i = xg)︸ ︷︷ ︸
λ(g;w;xg)

Neighborhood Propensity Score

× Pr(Wi = w|Xw
i = xw)︸ ︷︷ ︸

ϕ(w;xw)
Individual Propensity Score

The cardinality of the neighborhood treatment depends of the function gi



Continuous treatments and the generalized propensity score
Continuous treatment: Let G ⊆ R be the set of values for the treatment

Average dose-response function: µ(g) = E[Yi(g)]

Weak unconfoundedness: Gi ⊥⊥ Yi(g) | Xg
i for all g ∈ G

Let λ(g, x) = fG|Xg(g | xg) be the conditional density of the treatment given the covariates

The GPS for a continuous treatments is Λi = λ(Gi,Xg
i )

Properties of the GPS
X The GPS is a balancing score: fG(g | Xg

i ) = fG(g | Xg
i , λ(g,Xi)) = fG(g | λ(g,Xg

i ))

X Weak unconfoundedness given the GPS. If the assignment to the treatment is weakly
unconfounded given pretreatment variables Xg, then, for every g,

fG(g | λ(g,Xg
i ), Yi(g)) = fG(g | λ(g,Xg

i ))

X Bias Removal with GPS. If the assignment to the treatment is weakly unconfounded
given pretreatment variables X, then,

β(g, λ) = E [Yi(g) | λ(g,Xg
i ) = λ] = E

[
Yobs

i | Gi = g,Λi = λ
]

µ(g) = E [β(g, λ(g,Xg
i ))]

(e.g., Hirano and Imbens, 2004; Imai and Van Dyk, 2004; Bia and Mattei, 2008, 2012; Flores et al.,
2012; Kluve et al., 2012; Zhao et al., 2013, Bia et al., 2014)



The generalized propensity score

Matching usually unfeasible

GPS allows avoiding to specify a model for the relationship between potential
outcomes and covariates

How to use GPS

X Estimate the GPS, e.g., using a flexible parametric approach: Let Λ̂i be
the estimated GPS

X Estimate the conditional expectation function of Yobs
i given Gi and Λi as a

flexible function of its two arguments: Ê
[
Yobs

i | Gi = g,Λi = λ
]

X Estimate the average dose-response function at treatment level w
averaging Ê

[
Yobs

i | Gi = g, λ̂(g,Xg
i )
]

over λ̂(g,Xg
i )



Joint propensity score

Joint propensity score

ψ(w; g; x) := Pr(Wi = w,Gi = g | Xi = x) =
Pr(Gi = g | Wi = w,Xg

i = xg)︸ ︷︷ ︸
λ(g;w;xg)

Neighborhood Propensity Score

×Pr(Wi = w|Xw
i = xw)︸ ︷︷ ︸

ϕ(w;xw)
Individual Propensity Score

The joint propensity score is a balancing score:

p(Wi = w,Gi = g | Xi, ψ(w; g;Xi)) = p(Wi = w,Gi = g | ψ(w; g;Xi))

Conditional unconfoundedness of Wi and Gi given the joint / (individual +
neighborhood) PS:

If Yi(w, g) ⊥⊥ Wi,Gi | Xi then Yi(w, g) ⊥⊥ Wi,Gi | ψ(w; g;Xi)
Yi(w, g) ⊥⊥ Wi,Gi | λ(g;w;Xg

i ), ϕ(w;Xw
i )



Propensity Score-Based-Estimator (Subclassification + GPS)
Subclassification on ϕ(1;Xw

i )

1. Estimate ϕ(1;Xw
i ) (logistic regression for Wi conditional on covariates Xw

i )
2. Predict ϕ(1;Xw

i ) for each unit
3. Identify J subclasses Bj, with j = 1, . . . , J, where Xw

i ⊥⊥ Wi | i ∈ Bj

Within each subclass Bj estimate µj(w, g) = E
[
Yi(w, g) | i ∈ Bg

j

]
, where Bg

j = Vg ∩ Bj:
1. Estimate a model for the neighborhood propensity score λ(g;w;Xg

i ).
2. Use the observed data (Yobs

i ,Wi,Gi,Xg
i and Λ̂ = λ(Wi;Gi;Xg

i )) to estimate a model

Yi(w, g) | λ(w; g;Xg
i ) ∼ f (w, g, λ(w; g;Xg

i ))

3. For each unit i ∈ Bg
j , predict λ(w; g;Xg

i ), and use it to predict Yi(w, g)
4. Estimate the dose-response function averaging the conditional potential outcomes over

λ(w; g;Xg
i ) :

µ̂j(w, g) =

∑
i∈Bg

j
Ŷi(w, g)

|Bg
j |

Derive the average dose-response function

µ̂(w, g) =
J∑

j=1

µ̂j(w, g)πg
j πg

j =

∑
i∈Vg

1(ϕ(1;Xz
i ) ∈ Bj)

vg

Standard errors and confidence intervals are derived using bootstrap methods



Some concluding remarks

Propensity scores are powerful tools

Must however be used with care

Underlying assumptions are crucial

They determine how the propensity score should be specified and estimated
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